While large-scale sequence modeling from offline data has led to impressive performance gains in natural language and image generation, directly translating such ideas to robotics has been challenging. One critical reason for this is that uncurated robot demonstration data, i.e. play data, collected from non-expert human demonstrators are often noisy, diverse, and distributionally multi-modal. This makes extracting useful, task-centric behaviors from such data a difficult generative modeling problem. In this work, we present Conditional Behavior Transformers (C-BeT), a method that combines the multi-modal generation ability of Behavior Transformer with future-conditioned goal specification. On a suite of simulated benchmark tasks, we find that C-BeT improves upon prior state-of-the-art work in learning from play data by an average of 45.7%. Further, we demonstrate for the first time that useful task-centric behaviors can be learned on a real-world robot purely from play data without any task labels or reward information. Robot videos are best viewed on our project website: https://play-to-policy.github.io
translated by 谷歌翻译
尽管行为学习近期取得了令人印象深刻的进步,但由于无法利用大型,人类生成的数据集,它落后于计算机视觉和自然语言处理。人类的行为具有较大的差异,多种模式和人类的示范通常不带有奖励标签。这些属性限制了当前方法在离线RL和行为克隆中的适用性,以从大型预收取的数据集中学习。在这项工作中,我们提出了行为变压器(BET),这是一种用多种模式建模未标记的演示数据的新技术。 BET翻新带有动作离散化的标准变压器体系结构,再加上受对象检测中偏移预测启发的多任务动作校正。这使我们能够利用现代变压器的多模式建模能力来预测多模式的连续动作。我们通过实验评估了各种机器人操作和自动驾驶行为数据集的赌注。我们表明,BET可以显着改善以前的最新工作解决方案,同时捕获预采用的数据集中存在的主要模式。最后,通过一项广泛的消融研究,我们分析了BET中每个关键成分的重要性。 BET生成的行为视频可在https://notmahi.github.io/bet上获得
translated by 谷歌翻译
虽然视觉模仿学习提供了从视觉演示中学习最有效的方法之一,但从它们中概括需要数百个不同的演示,任务特定的前瞻或大型难以列车的参数模型。此类复杂性出现的一个原因是因为标准的视觉模仿框架尝试一次解决两个耦合问题:从不同的视觉数据中学习简洁但良好的表示,同时学习将显示的动作与这样的表示相关联。这种联合学习导致这两个问题之间的相互依存,这通常会导致需要大量的学习演示。为了解决这一挑战,我们建议与对视觉模仿的行为学习的表现脱钩。首先,我们使用标准监督和自我监督的学习方法从离线数据中学习视觉表示编码器。培训表示,我们使用非参数局部加权回归来预测动作。我们通过实验表明,与目视模仿的先前工作相比,这种简单的去耦可提高离线演示数据集和实际机器人门开口的视觉模仿模型的性能。我们所有生成的数据,代码和机器人视频都在https://jyopari.github.io/vinn/处公开提供。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells. SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironmet. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cell densities of different cells. We assess the generated images quantitatively and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task.
translated by 谷歌翻译
Autonomous mobile agents such as unmanned aerial vehicles (UAVs) and mobile robots have shown huge potential for improving human productivity. These mobile agents require low power/energy consumption to have a long lifespan since they are usually powered by batteries. These agents also need to adapt to changing/dynamic environments, especially when deployed in far or dangerous locations, thus requiring efficient online learning capabilities. These requirements can be fulfilled by employing Spiking Neural Networks (SNNs) since SNNs offer low power/energy consumption due to sparse computations and efficient online learning due to bio-inspired learning mechanisms. However, a methodology is still required to employ appropriate SNN models on autonomous mobile agents. Towards this, we propose a Mantis methodology to systematically employ SNNs on autonomous mobile agents to enable energy-efficient processing and adaptive capabilities in dynamic environments. The key ideas of our Mantis include the optimization of SNN operations, the employment of a bio-plausible online learning mechanism, and the SNN model selection. The experimental results demonstrate that our methodology maintains high accuracy with a significantly smaller memory footprint and energy consumption (i.e., 3.32x memory reduction and 2.9x energy saving for an SNN model with 8-bit weights) compared to the baseline network with 32-bit weights. In this manner, our Mantis enables the employment of SNNs for resource- and energy-constrained mobile agents.
translated by 谷歌翻译